

N-Tron Corporation

- N-Tron, Founded in Sept. 1999, is the #1 manufacturer of Industrial Ethernet Switches in North America
- Headquartered in Mobile, AL with operations in the U.S., Canada, EMEA, India and the Pacific Rim
- 500 Resellers & over 30,000 End Users in 75 Countries Worldwide
- Inc. 500|5000 ranks N-Tron as #36 of the top 100 high growth manufacturing companies in the U.S.
- N-Tron has been voted #1 provider of Customer Service for Industrial Network Switches by Control Design Magazine Readers (Putman Media).

Source: ARC Advisory Group

08202009.3

N-TRON Confidential

N-TRON's Target Vertical Markets

- Automotive
- Government/Military
- Metals and Mining
- Security
- Wastewater Treatment
- Marine
- Packaging
- Wind Turbine (#1 market Share)

- · Food and Beverage
- Pulp & Paper
- · Oil and Gas
- Manufacturing
- Power and Energy
- Chemical
- Warehousing & Distribution
- Transportation

The N-TRON Difference

Specifications	Typical Commercial Switch with Fan Cooling	Typical Industrial Switch and Field Devices	Typical N-Tron Switch
MTBF Hours	25K	200K	2M
Vibration/Shock	1/5G	5/10G	50/200G
ESD/Overvoltage Protection	2KV	4KV to 6KV	16KV
Operation Temp	0°to 45°	-20° to 60°	-40° to 85°

08202009 5

N-TRON Confidential

N-Tron IEEE 802.11 Industrial Wireless

702 Wireless

- 40 to 70° C

1M Hour MTBF

200 G Shock/ 50 G Vibration

Class I Div 2

16KV ESD Protection on the RJ45 port

Dual 20-49 VDC or PoE Input with 600 Watt Surge Protection

Manufactured in the USA

802.11a,b,g,n Up to 300Mbps

3x3 MIMO Operation

AP or Station & Bridge or Router Modes

Highest Power & Performance

DHCP Server

WEP, WPA, WPA2 Security

082020097

702 Wireless

- 40 to 70° C

1M Hour MTBF

200 G Shock/ 50 G Vibration

Class I Div 2

16KV ESD Protection on the M12 port

Dual 20-49 VDC or PoE Input with 600 Watt Surge Protection

IP67 Rated Enclosure

802.11a,b,g,n Up to 300Mbps

3x3 MIMO Operation

AP or Station & Bridge or Router Modes

Highest Power & Performance

DHCP Server

WEP, WPA, WPA2 Security

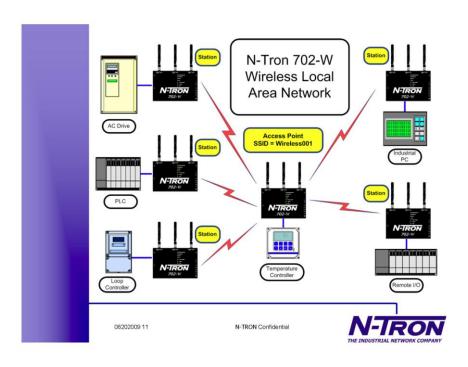
Manufactured in the USA

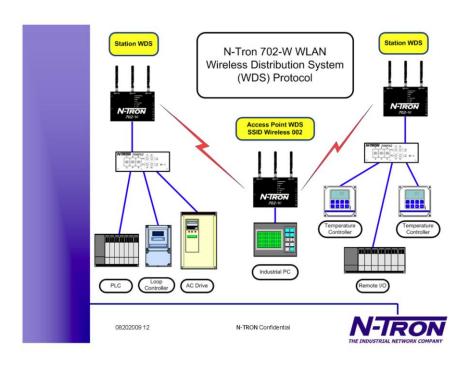
802.11 Wireless The N-TRON Difference

Specifications	Typical Commercial Wireless	Typical Industrial Wireless	N-Tron Industrial Wireless
Transmit Power	50mW	90mW	250mW
Receive Sensitivity	-66dBm	-82 dBm	-97 dBm
IEEE802.11 a,b,g,n	Yes	No	Yes
Operation Temp (°C)	0°to 40°	-20° to 55°	-40° to 70°
Regulatory Approvals	UL 1950 (Appliance)	UL 1604	UL 1604, Class 1, Div 2,ABCD IEEE 1613 for Substation NEMA TS1/TS2 for Traffic Control

082020099

N-TRON Confidential

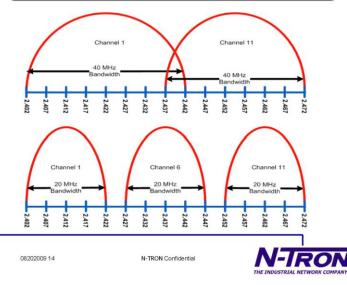

IEEE 802.11 Wireless Local Area Network Standards


Protocol	Release Date	Operating Frequency	Throughput Typical		Modulation Technique	Range (Radius Indoor) Depends, # and type of walls	Range (Radius Outdoor) Loss includes one wall
802.11a	1999	5.X GHz	23 Mbit/s	54 Mbit/s	OFDM	~35 meters	~120 meters
802.11b	1999	2.4 GHz	4.3 Mbit/s	11 Mbit/s	DSSS	~38 meters	~140 meters
802.11g	2003	2.4 GHz	19 Mbit/s	54 Mbit/s	OFDM	~38 meters	~140 meters
802.11n	2009	2.4 GHz 5.X GHz	74 Mbit/s	248 Mbit/s	MIMO SDM	~70 meters	~250 meters

OFDM = Orthogonal Frequency-Division Multiplexing
DSSS = Direct-Sequence Spread Spectrum Multiplexing
MIMO/SDM = Multiple-Input Multiple-Output / Spatial Division
Multiplexing

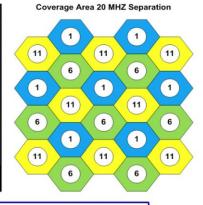
Note 1 - 802.11g is backward compatible with 802.11b Note 2-802.11n is backward compatible with 802.11a,b,g

Frequency Comparison 2.4GHz to 5.8GHz


Compare	2.4GHz	5.8GHz
	Many devices use these Frequencies	Fewer devices use these frequencies
Interference	Frequency spread between channels is small which leads to interference	Wider frequency spread between channels causes less interference
Maximum Radius Walled Office, Standard Antennas	~ 40 Meters	~ 20 Meters
Maximum Radius Open Room, Standard Antennas	~ 60 Meters	~ 30 Meters
Maximum Radius Outdoors, Standard Antennas	~ 200 Meters	~ 100 Meters
Maximum Radius Outdoors, Omni Antennas	~ 600 Meters	~ 280 Meters

08202009 13

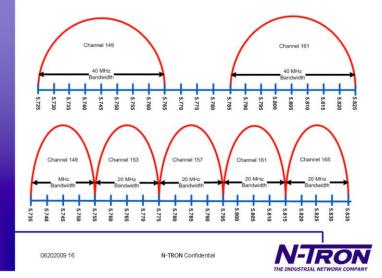
N-TRON Confidential



2.4 GHz Channel Allocation at 20MHz and 40MHz Bandwidth

Two Dimensional Access Point Channel Planning Layout for a 2.4GHz Wireless Extended Service Set

Channel Number	Frequency (GHz)
Channel 01	2.412
Channel 02	2.417
Channel 03	2.422
Channel 04	2.427
Channel 05	2.432
Channel 06	2.437
Channel 07	2.442
Channel 08	2.447
Channel 09	2.452
Channel 10	2.457
Channel 11	2.462
802.11	b,g,n
20 or 40 MHz Cha	nnel Separation



08202009 15

N-TRON Confidential

5.8 GHz Channel Allocation at 20MHz and 40MHz Bandwidth

Two Dimensional Access Point Channel Planning Layout for a 5.8GHz Wireless Extended Service Set

Coverage Area 20 MHZ Separation

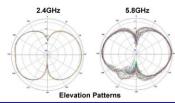
149

149

Channel Number	Frequency (GHz)	
Channel 149	5.745	
Channel 153	5.765	
Channel 157	5.785	
Channel 161	5.805	
Channel 165*	5.825	
802.1	1a,n	
20 or 40 MHz Channel Separation		

band width is used.

Note - Channel 36,40,44,48,52,56,60,64 are not supported by N-Tron


08202009 17

N-TRON Confidential

Omni Directional Antenna Range & Radiation Patterns

	2.4	GHz	5.8	GHz
Antenna Gain	2dBi	2dBi	4dBi	4dBi
Throughput	26MBps	100MBPS	26MBps	100MBPS
Distance (Miles)	1.35	0.12	0.81	0.07
Distance (kilometers	2.18	0.194	1.3	0.116
TX Power	22dBm	15dBm	22dBm	15dBm
Receive Sensitivity	-91dBm	-77dBm	-90dBm	-76dBm
Number of Antennas	2	2	2	2

2.4 GHz Mini Directional

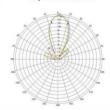
Range Estimates *		
Throughput	26Mbps	100Mbps
Distance (Miles)	4.37	0.82
Distance (kilometers)	7.04	1.32
Tx Power	20dBm	15dBm
Receive Sensitivity	-88dBm	-77dBm
Number of Antennas	1	2

* Range estimates are theoretical

08202009 19

N-TRON Confidential

Directional Antenna Range & Radiation Patterns

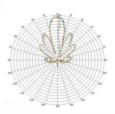

2.4 GHz Flat Panel

	Range	Estimates
--	-------	------------------

Throughput	26Mbps	100Mbps
Distance (Miles)	6.9	2.05
Distance (kilometers)	11.15	3.31
Tx Power	20dBm	15dBm
Receive Sensitivity	-88dBm	-77dBm
Number of Antennas	1	2

* Range estimates are theoretical

08202009 20


Directional Antenna Range & Radiation Patterns

5.8 GHz Flat Panel

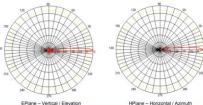
Range Estimates *		
Throughput	26Mbps	100Mbps
Distance (Miles)	7.7	1.2
Distance (kilometers)	12.41	1.96
Tx Power	20dBm	15dBm
Receive Sensitivity	-87dBm	-76dBm
Number of Antennas	1	2

^{*} Range estimates are theoretical

08202009 21

N-TRON Confidential

Directional Antenna Range & Radiation Patterns


5.8 GHz Parabolic

08202009 22

Range Estimates *		
Throughput	26Mbps	100Mbps
Distance (Miles)	36.74	14.63
Distance (kilometers)	59.12	23.53
Tx Power	20dBm	15dBm
Receive Sensitivity	-87dBm	-76dBm
Number of Antennas	1	2

* Range estimates are theoretical

Litate - Vertical / Lievation

Wireless Industrial Network Applications Examples

08202009 23

N-TRON Confidential

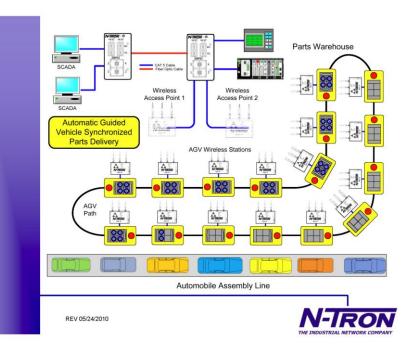
1) Automotive Assembly
Parts Delivery
&
2) Wind Energy
Topologies

Case Study: Automotive Industry

The automotive industry has begun to deploy wireless technology in their plants and is beginning to reap its inherent benefits, including:

- Cabling cost reduction
- Ease of installation
- Real time data requirement
- Equipment mobility

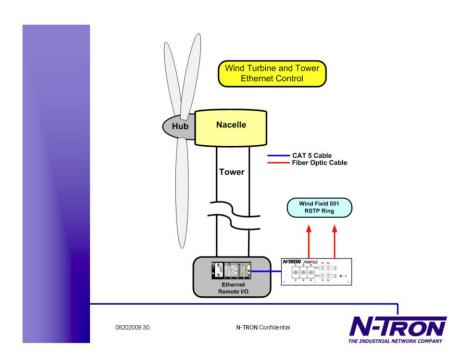
REV 05/24/2010

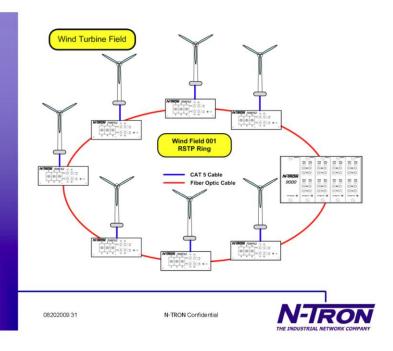


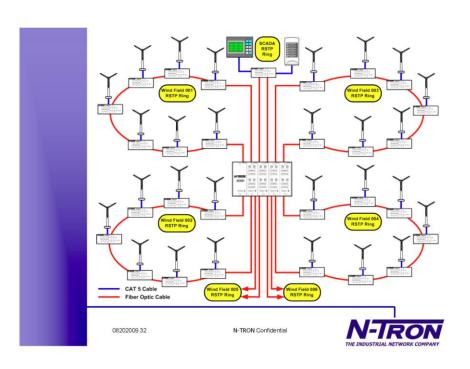
Case Study: Automotive Industry

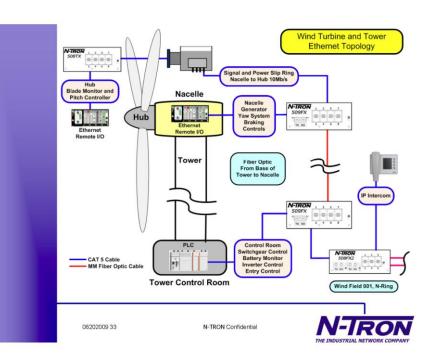
In a recent installation a major automotive manufacturer selected the N-TRON 702-W wireless Ethernet radio to establish communication between the factory production and scheduling systems, the warehouse parts delivery system, and the automatic guided vehicles used to deliver parts to the assembly line.

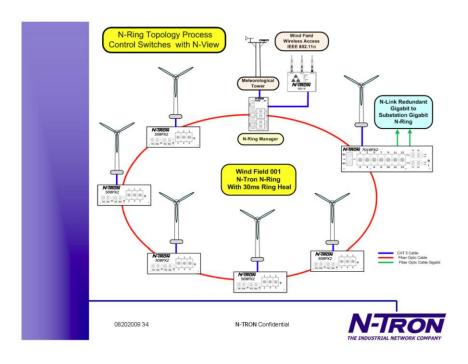
Case Study: Automotive Industry

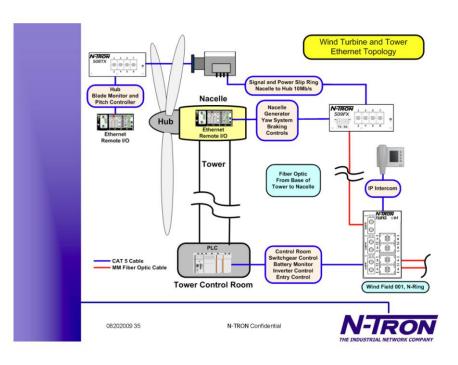

The electrical noise, extreme vibration and temperature requirements, along with the data bandwidth requirements of this application are well beyond the capacities of most wireless equipment currently available in the market. The N-TRON 702-W IEEE 802.11n wireless device with three antennas Multiple-Input Multiple-Output / Spatial Division Multiplexing (MIMO/SDM), however, was able to handle both the environmental and bandwidth requirements of this application.

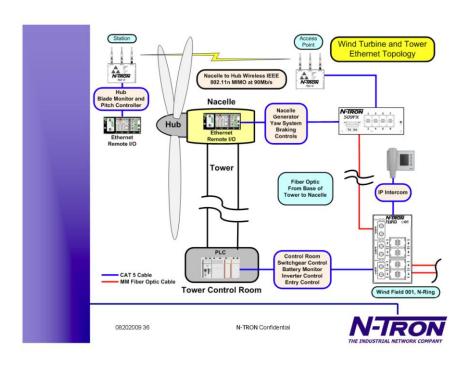


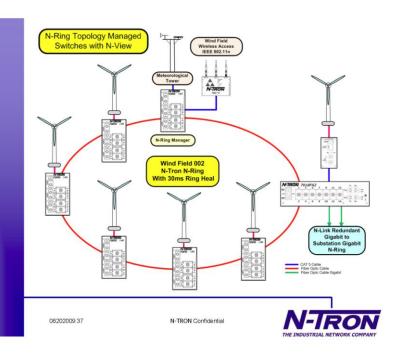

Wind Energy Topologies

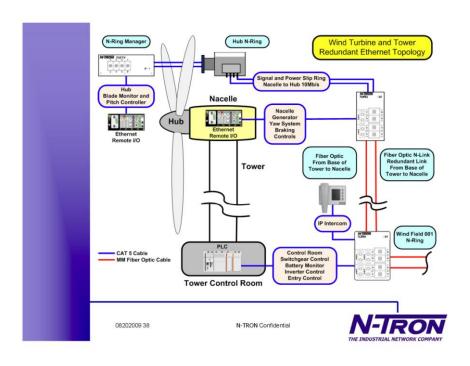

08202009 29

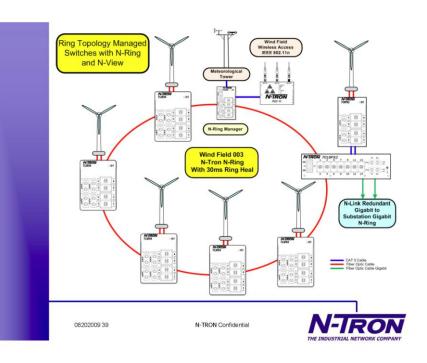


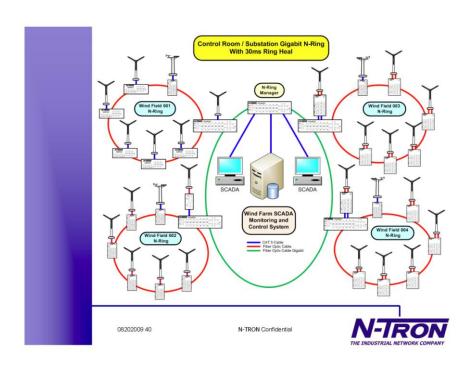












Why use N-TRON?

SUPERIOR:

- Products
- Support
- Value

08202009 41

